Extensions 1→N→G→Q→1 with N=S3xC62 and Q=C2

Direct product G=NxQ with N=S3xC62 and Q=C2
dρLabelID
S3xC2xC62144S3xC2xC6^2432,772

Semidirect products G=N:Q with N=S3xC62 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC62):1C2 = C6xD6:S3φ: C2/C1C2 ⊆ Out S3xC6248(S3xC6^2):1C2432,655
(S3xC62):2C2 = C6xC3:D12φ: C2/C1C2 ⊆ Out S3xC6248(S3xC6^2):2C2432,656
(S3xC62):3C2 = C3xS3xC3:D4φ: C2/C1C2 ⊆ Out S3xC62244(S3xC6^2):3C2432,658
(S3xC62):4C2 = C2xC33:6D4φ: C2/C1C2 ⊆ Out S3xC62144(S3xC6^2):4C2432,680
(S3xC62):5C2 = C2xC33:7D4φ: C2/C1C2 ⊆ Out S3xC6272(S3xC6^2):5C2432,681
(S3xC62):6C2 = S3xC32:7D4φ: C2/C1C2 ⊆ Out S3xC6272(S3xC6^2):6C2432,684
(S3xC62):7C2 = C3xC6xD12φ: C2/C1C2 ⊆ Out S3xC62144(S3xC6^2):7C2432,702
(S3xC62):8C2 = S3xD4xC32φ: C2/C1C2 ⊆ Out S3xC6272(S3xC6^2):8C2432,704
(S3xC62):9C2 = C3xC6xC3:D4φ: C2/C1C2 ⊆ Out S3xC6272(S3xC6^2):9C2432,709
(S3xC62):10C2 = S32xC2xC6φ: C2/C1C2 ⊆ Out S3xC6248(S3xC6^2):10C2432,767
(S3xC62):11C2 = C22xS3xC3:S3φ: C2/C1C2 ⊆ Out S3xC6272(S3xC6^2):11C2432,768

Non-split extensions G=N.Q with N=S3xC62 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC62).1C2 = C3xD6:Dic3φ: C2/C1C2 ⊆ Out S3xC6248(S3xC6^2).1C2432,426
(S3xC62).2C2 = C62.77D6φ: C2/C1C2 ⊆ Out S3xC62144(S3xC6^2).2C2432,449
(S3xC62).3C2 = C32xD6:C4φ: C2/C1C2 ⊆ Out S3xC62144(S3xC6^2).3C2432,474
(S3xC62).4C2 = S3xC6xDic3φ: C2/C1C2 ⊆ Out S3xC6248(S3xC6^2).4C2432,651
(S3xC62).5C2 = C2xS3xC3:Dic3φ: C2/C1C2 ⊆ Out S3xC62144(S3xC6^2).5C2432,674
(S3xC62).6C2 = S3xC6xC12φ: trivial image144(S3xC6^2).6C2432,701

׿
x
:
Z
F
o
wr
Q
<